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Abstract 

This study aims at investigating a  mechanism that can produce surface 
scaling of cementitious materials under freezing and thawing without 
deicing salts. The model allows coupling the liquid/ice crystal 
thermodynamic equilibrium, Darcean water transport, thermal conduction 
and thermoelastic properties of the different phases that form the porous 
material. It predicts that the maximum pore overpressure is reached near 
the surface, which can result in scaling. Then, the relative influences of the 
physical processes that produce frost defacement are investigated and the 
Powers’ hydraulic pressure is found to be the most prejudicial one. Finally, 
macroscopic liquid water transport through the structure is numerically 
studied, which leads to identify the permeability as a durability indicator 
towards frost surface damage. 
 
 

1. Introduction 

Frost defacement of civil engineering structures costs millions of euros to 
cold regions every year. Two kinds of deteriorations are observed: (i) 
internal frost that takes place within the whole medium and acts as micro-
scale damage; (ii) frost scaling that produces the local stick out of surface 
pieces down to a depth of some millimetres (Marchand et al., 1994). 

At a temperature below the bulk freezing point, confined water can 
partially remain liquid provided that it depressurizes with regard to the 
adjacent ice crystal (Scherer, 1993). As an initially water-saturated porous 
material remains filled by both ice and liquid water down to at least 

04 0 C− , the mechanical response of a porous material results from the 
combination of the liquid-to-solid expansion and the transport of unfrozen 
liquid water through the porous network. A poromechanics-based 
approach that takes account of the thermoelastic behaviour of all phases, 
has already been worked out to understand and quantify the phenomena 
both at the pore scale (Coussy and Fen-Chong, 2005) and at the material 
scale (Coussy, 2005). 
This study aims at extending the poromechanics-based approach to the 
structure scale in order to analyse the relative influences of the physical 
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processes that produce frost defacement and the role of the liquid water 
transport phenomenon on frost scaling behaviour of a cement structure. 
 
 

2. Poromechanics of a freezing medium 

2.1. Water and ice equilibrium 

The liquid water (index l ) and ice crystal (index c ) constitutive equations 
read in the form: 
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where jK , jα , and jc  stand for the isothermal bulk modulus, the 
volumetric thermal dilation coefficient and the heat capacity per mass unit 
of the phase j  while jρ , jp , and js  are respectively its mass density, 
pressure, and mass entropy (Coussy, 2004). 
The thermodynamic equilibrium between water and ice requires the 
equality of their specific chemical potentials. Its differentiation, combined 
with (1), and considering a small density difference between liquid water 
and ice, furnishes (Fabbri et al., 2006a): 
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of fusion and the heat capacity differences between water and ice per unit 
of crystal volume in the reference state at temperature 0T  while 

c a p c lp p p= −  stands for the capillary pressure. 
 
 

2.2. Constitutive equations of the porous specimen 

Considering the initial state to be ( 0 ) 0xσ , = , ( 0 ) 0xε , = , 
( 0 ) ( 0 ) 0l cp x p x, = , = , ( ), 0 0j xϕ = , 0( 0 )S x S, = , and the properties of the 

solid matrix to be constant, the constitutive equations of the partially 
frozen material are (Coussy, 2005; Fabbri et al., 2006b): 
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where σ  is the stress tensor, ε  is the strain tensor, ( )trε ε=  is the 
volumetric dilation, jϕ  is the variation of the partial porosity related to the 
phase ,j l c= ; K , G , mC , and α  are respectively the bulk modulus, the 
shear modulus, the heat capacity, and the thermal volumetric dilation 
coefficient, of the empty porous medium; jb  and ijN  are the generalized 
Biot coefficients and the generalized Biot coupling moduli while jφα  is the 
coefficient related to the thermal dilation of the pore volume occupied by 
the phase j . They depend upon the elastic properties of the solid matrix 
and the saturations of liquid and ice following the relations (Coussy and 
Monteiro, 2006): 
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mK  is the matrix bulk modulus, jS  the saturation ratio of the phase j , and 

0φ  the initial porosity. 
 
 

2.3. Overall mass conservation of water 

Due to the temperature gradient along the structure, the pressure field is 
not uniform and a liquid flow is created. Since the ice flow is negligible, the 
overall mass conservation of water ( l cm m m= + ) under the small 
deformation assumption and the use of (1-4) leads to the following first 
order expression: 
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where 0 ( ) ( ) ( )l l l l lS T p g r a d pω ρ κ η= − / ,  stands for the Darcean relative flow 
vector of mass fluid, ( )lSκ  and ( )l lT pη ,  are respectively the permeability 
of the porous medium and the viscosity of liquid water. The latter is 
evaluated from a recent empirical relation (Harry and Woolf, 2004) and 
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pressure is divided into three distinct contributions: 
0
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results from the ice/water mass density change, 
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dilation between the matrix and the in-pore constituents, 
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decreasing function of cooling (1 1m cK K/ < / ) and accounts for the liquid 
pressure source due to flows at the microscopic scale which drives liquid 
water to the already frozen sites in order to meet at any time the liquid-
crystal equilibrium condition (cryogenic aspiration). 
 
 

2.4. Thermal conduction 

Following the Fourier’s Law, the heat flow can be expressed as 
( ) T

l xq S xλ ∂
∂= − , where ( )lSλ  is the isotropic thermal conductivity and 

estimated from each phase conductivity using the (n+1)-phase multi-scale 
scheme (Hervé, 2002). Under these conditions, the second law of 
thermodynamics applied to the porous medium for a reversible evolution 
leads to: 
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latent heat, 0 0
p l l p lC cρ ,=  for the heat capacity of water per unit of volume, 
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+ −  represents the average heat capacity of the porous 
medium. 
 
 

3. Numerical results 

3.1. Sample description and boundary conditions 

The specimen is modelled as an one-dimensional structure made up of an 
isotropic medium, of length L  and lateral surface S , ideally insulated on 
its bottom and lateral surfaces. The Cartesian coordinate system 
( )O x y z, , ,  is used, with O  the centre of the surface which is submitted to 
frost action and x  the symmetry axis from the top to the bottom of the 
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specimen. At the macroscopic scale the flow of heat and liquid only 
happens in the direction x  and no water flux (ω ) happens through the 
x L=  surface. The analysis will be made using the elementary volume 
d dS xΩ = . 
The specimen bottom side ( x L= ) is initially at 28315bT = . K, while its top 
side ( 0x = ) is at 27325tT = . K. The permanent state is reached before the 
beginning of the test. Thus the initial temperature of the sample 
is 0 ( ) ( )t b tT x T T T x L= + − / . Then at 0t = , the 0x =  surface is submitted to a 
progressive decrease of temperature while the x L=  surface is held at bT . 
In this study, no external loading is applied to the structure. Thus noting 
∂Ω  the external surface of the specimen, n∂Ω  the outward unit vector 
perpendicular to this surface, the mechanical boundary condition can be 
expressed as 0nσ ∂Ω⋅ =  on ∂Ω . 
We assume that an impermeable frost layer is created at the 0x =  skin 
surface. In this case, no flow of water occurs through this surface, and the 
boundary condition will be 0 0  f o r 0n xω ⋅ = =  where 0n  is the outward unit 
vector perpendicular to the 0x =  surface. 
 
 

3.2. Numerical calculation 

The non-linear system (5-6) is solved using the Newton-Raphson method 
on a structure discretised according to the finite volume method implicit 
scheme (Eymard et al., 2000). 
Numerical calculations are made for a W/C=0.4 hardened cement paste 
with an initial permeability of 4.3 10-21 m2 and the relative permeability is 
estimated through the self-consistent differential scheme (Dormieux and 
Bourgeois, 2003) because water cannot flow through the ice phase. 
Predicted temperature, ice saturation, ice pressure and liquid pressure 
profiles are given on figure 1. 
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Figure 1: Temperature, ice saturation ratio, ice pressure and liquid pressure 
predicted from the numerical calculations for a W/C=0.4 hardened cement paste. 

 
 

As the decrease of temperature penetrates into the specimen, a rise of 
liquid and ice overpressure and ice saturation ratio, with a maximum near 
the 0x =  surface, is predicted. The higher pressures (30 MPa for ice 
pressure and 8 MPa for water pressure) are of the same order of 
magnitude as a W/C=0.4 hardened cement paste tensile strength (round 
to 10 MPa (Taylor, 1997)). This can explain cement structure scaling 
submitted to frost action. 
The comparison of 1-hour and 4-hour curves shows a hysteresis between 
the thawing and the freezing behaviours. This is due to the transport of 
water through the porous network and the hysteresis of the amount of ice. 
At the end of the thawing stage, liquid water depressurization is predicted 
near the skin surface. This is the consequence of the water transport from 
the 0x =  surface to the x L=  one during the freezing stage combined with 
the liquid-ice density difference. 
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4. Physical origin of frost-thaw damages 

It is shown in (5) that the frost damage can be attributed to the 
combination of the hydraulic pressure, the thermal stresses and the 
cryogenic aspiration. Thanks to the model developed in this study, it is 
possible to compare the relative importance of these phenomena. The 
comparison between the pore overpressure profile from a full calculation 
and calculation without one of the source of liquid pressure terms is 
reported on figure 2. In order to carry on the comparison, the hydrostatic 
part of the matrix stress tensor mσ  will be studied. As reported in (Coussy, 
2004), neglecting the influence of the interfacial tension between liquid 
water and pore walls, mσ can be linked to the skeleton stress and the 
equivalent pressures of liquid and crystal by the relation 
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− +
=

−
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Figure 2: Influence of each source of liquid pressure terms on  the mσ  profiles. 
 
 

Let us introduce ∆r as the relative difference on mσ  between full and 
partial calculations. Calculations without cryoΣ  leads to ∆r=15%, without 
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TΣ leads to ∆r=25% and without ρ∆Σ leads to ∆r=55%. In consequence, 
frost damage appears to be mainly due to the hydraulic pressure. That is 
why the presence of air void within the material is such efficient to prevent 
frost damage. Thermal stresses appear also to be important. Finally, the 
cryogenic aspiration term appears to be a negligible phenomenon from the 
mechanical standpoint. 

Actually, the hydraulic pressure term is such important in case of 
cementitious material because this type of medium is consolidated, rigid 
(Young modulus around 50 GPa) and tensile resistant (up to 5-10 MPa). 
Then, contrary to what is observed in the case of soils frost heave, the 
overpressure caused by the change-phase volumetric expansion cannot 
be dissipated by a microstructural modification of the porous network, 
which results in important matrix stresses. 

 
 

5. Influence of the permeability 
To scan the effect of permeability alone, the predicted matrix hydrostatic 
stress profiles (at 2 hours) between porous specimens with an initial 
permeability equal to 204 3 1 0−. × m2, a ten and a hundred times higher, have 
been compared. 
 

 
Figure 3: Influence of the permeability on frost-thaw behaviour. 
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As can be seen on figure 3, when the permeability is increased, the 
maximum hydrostatic tensile stress in the matrix falls down. It means that 
a higher permeability allows the liquid water to move easier from the 
freezing front to the specimen bottom unfrozen part. This explanation is in 
good agreement with the fact that scaling may be caused by the inability 
of the frozen porous network to relax local overpressure from the skin 
surface. In addition, it explains experimental data from (Baroghel-Bouny et 
al., 2002) where a concrete with a compressive strength equal to 50 MPa 
exhibit a better frost durability than a less permeable high resistance 
concrete (with a compressive strength equal to 75 MPa). 

So, in case of initial and boundary conditions which force the top 
surface temperature to be lower than the bottom one, water will first freeze 
near the skin surface. If the amount of ice formed is important enough and 
the permeability is too small to relax pore overpressure, scaling will occur. 
Thus, it appears to be a localised "internal frost"-like damage enhanced by 
the 0x =  surface boundary condition. 
 
 
6. Conclusion 
 
It is here investigated the frost behaviour of a cementitious structure. The 
poromechanical-based approach is first used in order to investigate the 
relative influence of the physical processes that produce frost defacement 
is investigated. The Powers’ hydraulic pressure is found to be the most 
prejudicial one and the permeability is identified as a durability indicator 
towards frost surface damage. 
Then, the model is used to understand the role of permeability towards 
frost durability. This study shows that scaling is more likely to happen in 
low permeable structure. Indeed, in this case , the relaxation of pore 
overpressure near the surface submitted to frost action is not sufficient to 
protect the specimen from scaling. 
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