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Abstract 
In a separate paper we have shown that penetration tests mobilize the 
material in shear mode and that the property measured, at least in low 
speed tests, is yield stress [1]. However, since the critical deformation is 
similar for most cementitious materials, this also measures the shear 
modulus. Results obtained with such tests can therefore be converted to 
true material properties rather than remaining as the arbitrary values they 
are usually considered to be.  
 
In this paper, we demonstrate this by using shear modulus measurements 
and comparing them to forces measured with a penetrometer for which the 
needle size and shape is varied.  We illustrate how simple penetration 
experiments can be used to develop more profound analysis of cement 
hydration kinetics. 



   

   

1 Introduction 
Various empirical tests are used to follow the setting of cementitious 
materials. These are sometimes defined as consistency or setting time 
measurements. They include the Vicat needle, penetrometers and the 
Proctormeter also known as the Proctor needle, as well as the Hilti nail 
gun.  
 
In a previous paper, we examined the situation of penetrometers in 
particular detail. These are instruments on which mounted needles are 
continuously driven into samples at a very low speed (1µm/s) while the 
force required to do so is measured over time. An important aspect is that 
the needle tip is wider than the rod on which it is mounted (Figure 1). 
Consequently, samples with a yield stress above a minimum value (not 
defined here) do not close up the gap above the tip and the surface S 
through which the needle transmits stress to the sample is constant during 
the experiment. A change in force over time can therefore be attributed not 
to a deeper penetration of the needle but to a change of the material 
measured.  
 
The former paper demonstrated that the force measured is proportional 
yield stress. Since critical deformations in cementitious materials are 
relatively constant, this force is also proportional to the shear modulus. 
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Figure 1. Schematic illustration of the difference between Vicat needle and 
penetrometer tests. The Vicat needle is used in different locations and the bearing 
surface decreases as the material stiffens (left). The penetrometer drives into the 
sample a needle of which the load bearing surface is constant over time (center). 
The expressions for those load bearing surfaces are given above for two needle 
geometries (right). 



   

   

 
In this paper we vary the size and shape of the needles to demonstrate the 
link of such measurements to shear modulus.  
 

2 Materials and methods 
Cement pastes are prepared by adding water into a Hobart mixer already 
containing the cement and mixing for 2 minutes. Unless noted otherwise, 
no admixture is included and the W/C was 0.3. The paste is transferred 
into the measuring cell of a penetrometer and the needle is driven into the 
sample until it fully submerged. At that point the measurement is initiated, 
causing the sample holder to rise at 1µm/min, while the force on the needle 
is recorded. Several cells with different tip geometries are used in parallel 
to eliminate any possible variations in cement paste properties. 
 
In addition, some material of the same type is introduced into a specially 
built ultrasound spectrometer operating in echo mode and with a shear 
transducer. Usual treatments of acoustic impedance are used to determine 
the shear modulus over time and data are stored on a computer. Some 
additional measurements were performed with a Vicat needle, using 
needles of different diameters.  
 

3 Results 
3.1 Hemispherical tip 
Forces measured with a penetrometer having needles in the shape of  
hemispheres with diameters 15, 10 and 5 mm are shown in Figure 2 along 
with the shear modulus measured by ultrasound. A close examination of 
the data reveals that at long times all curves evolve as a power law of time 
with a similar exponent of about 5.4. A similar behaviour is also seen at 
short times, although in this case the exponent is unity. 
 
These similar exponents suggest a normalisation approach where a 
scaling factor is used to superpose all curves onto a single one. However, 
cement paste is initially viscoelastic and its modulus is frequency 
dependent. Therefore, we normalise only for the second stage where the 
modulus is not frequency dependent (confirmed ultrasound measurement 
not reported here). 
 
It also turns out that the forces obtained with these needles superpose 
extremely well when they are divided by the tip surface (Figure 3). This is 
consistent with Coussot’s [2] prediction but differs from our FE results [1]. 
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Figure 2. Shear modulus measured by ultrasound and penetration force 
measured with three hemispherical dips of different diameters. The scaling is 
such that the similar power law evolutions versus time can be seen between both 
types of measurements. 
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Figure 3. Ultrasound shear modulus and penetrometer force measured with hemispherical 
tips and normalised by the hemisphere surface. The penetrometer results are also 
rescaled by a single factor which collapses the data at long times on a single master 
curve. 
 
3.2 Hemispherical tip and connected cylinder 
As an extension to the previous tests, needles with a hemispherical end 
mounted on cylinders of same diameter but different lengths were used. 
Data for diameters of 5 and 15 mm with heights of 0, 2, 10 and 15 mm are 
shown in Figure 4a.   



   

   

The data do not superpose well when dividing by the surface. A better 
superposition is however obtained if we assume that the contribution of the 
cylindrical part is smaller than that of the tip, and normalise by a surface 
analogue written as: 

( )HH nn
H hRnRS 1

22* 22 −+= ππ  Eq. (1)

In this way we are using units of surface, an approach that has also 
successfully been used in analysing a ball indentation penetrometer [3]. It 
is worth pointing out that including nH not only as exponent but also 
prefactor of the second term means S* corresponds hemispherical tip 
when nH = 0 while as it is equal to the cylinder surface when nH is unity. 
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Figure 4. Penetrometer measurements with different tips. The first number in the legend is 
the diameter in mm of the hemispherical end and the second the height of the cylindrical 
section of same diameter placed above. b) uncorrected force, b) normalised by surface 
analogue expression given in Eq. (1). 
 
This rather primitive surface analogue normalisation gives surprisingly 
good results as shown in Figure 4b. However, the data series with the 
largest diameter and height remain outliers. This result is reproducible and 
probably is a result of the needle size no more negligible compared to the 
cell size. 
 
 
3.3 Conical tip and connected cylinder 
In a series of experiments with conical tips, we use an expression 
analogous to Eq. (1) adapted for a conical rather than a hemispherical end: 

( )HH nn
H hRnhRRS 1

22
2

2* 2 −++= ππ  Eq. (2)
where h1 and h2 are the high of the cylindrical and conical section 
respectively (Figure 1). 
 
However, in this case the best superposition is obtained when nH is unity, 
so that we are dividing by the needle surface (Figure 5). The contribution of 
the cylindrical section therefore seems to be influenced by the tip shape. It 

a) b)



   

   

is not clear why this should be the case, but it is important to underline the 
difference.  
 

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 50 100 150 200 250

Time [min]

Yi
el

d 
st

re
ss

 [A
U

],
Sh

ea
r m

od
ul

us
 [k

Pa
]

D = 6mm;   h1 = 17mm;   h2 = 3mm
D = 6mm;   h1 = 10mm;   h2 = 5.2mm
D = 2.5mm; h1 = 3.3mm; h2 = 2.2mm
D = 6mm;   h1 = 10mm;   h2 = 3mm
Ultrasound

 
Figure 5. Pentrometer force normalised by surface of conical tip. 
 
 
3.4 Vicat needle 
Measurements with the Vicat needle, using two diameters of the needle 
are found to be comparable using similar surface equivalent approach but 
neglecting the end surface. In this case, the value of nH is found to be 1.2. 
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Figure 6. Vicat test where the fixed load is normalised by an equivalent surface where the 
radius exponent is 0.8 and the penetration depth exponent is 1.2. 
 
 



   

   

4 Discussion 
4.1 Basic concepts 
The results presented for the hemisphere tip show that data correlate with 
the shear modulus at long times. They also show similar evolution at 
shorted times but with a scaling factor that depends on the viscoelastic 
nature of the material over that period of time. 
 
Data obtained using a hemispherical tip can be well normalised by dividing 
by the hemisphere radius. Thus we find a force that scales with the second 
power of radius rather than its 2/3 as found in [1]. As mentioned in that 
article such a result may be explained in the following way [4]. First it is 
assumed that Stokes law can be used: 

RVF πη6=  Eq. (3)
where η is the viscosity of the continuous phase, R is the sphere radius 
and V its velocity. 
 
If the material can be assumed to have a Bingham type behaviour then we 
have: 

γηττ &B+= 0  Eq. (4)
where τ0 is the yield stress and ηB the plastic viscosity. Substitution into 
Eq. (3) gives: 

VRF B ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= η

γ
τπ
&
06  Eq. (5)

For a quasi-static condition, we do not have to worry about ηB but only 
about γτ &/0 . Furthermore for a sphere, it has been shown that the velocity 
gradient is well approximated by [5]: 

( )RkV 2/
o

γ≅  Eq. (6)

where k is a constant close to unity. Substitution into Eq. (3) gives 

0
212 τπRF =  Eq. (7)

This would imply that the force would be equal to 6 times the product of the 
surface by the yield stress. The proportionality factor between force and 
elastic modulus is similar (5.1), implying that the critical strain is unity 
which is not consistent with what is known for cementitious systems [6]. 
 
An alternative approach is to assume that the load is carried by needle 
surface. This leads to underestimating the load while as above it is 
overestimated. The reason is that the interface between the elastic and 
plastic zone which is not located at the tip surface even at low speed [1, 7].  
 



   

   

4.2 Tip size and shape 
In the case of the hemispherical tip, data normalise well with R2, as 
suggested above. However, when the hemispherical tip is extended with a 
cylinder of same diameter and varying height, we find that Eq. (1) leads to 
a good normalisation with values of nH of 0.5. 
 
On the other hand, needles having conical tips lead to data that normalise 
well with their surfaces (nH is equal to 1 in Eq. (2)). This suggests that the 
force on the cylindrical section scale differently according to the shape of 
the needle end. This possibility will be discussed below in the analysis of 
the Hilti and Vicat needle tests. 
 
 
4.3 Hilti needle 
In the Hilti needle test, a needle is shot into a cementitious material and the 
penetration depth is taken as indicative of strength. Data are generally 
analysed in terms of the Bracher table. This relates compressive strength 
to penetration depth through the following exponential function (continuous 
line in Figure 7).  

⎟⎟
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⎞
⎜⎜
⎝

⎛
−+=

0

exp
10 P

PCCC SSS  Eq. (8)

where PaCS
3105

0
= , PaCS

7106
1
=  and mmP 7.250 = . 

 
However, as indicated in Figure 7 an inverse 2nd power of penetration 
depth fits the data very well. 
 
For this type of test, we consider that the needle is given a certain energy 
and that it stops once the energy has been fully dissipated. In this case the 
role of plastic viscosity is most probably not negligible. If nevertheless, we 
neglect it for convenience, the dissipated energy can be written as: 

12
0

0

2
0

0

+−− ≈≈≅ ∫∫ HHHH nn
H

nn
H

HRdhhRdHFU ττ  Eq. (9)

where the shape of the needle end may affect the value of nH, although its 
contribution to the loaded surface is neglected.  This is also written as: 

120
1

+−≈
HH nn HR

τ  Eq. (10)

Thus the result in Figure 7 may be understood if compressive strength 
scales with the shear yield stress and if nH is unity as in the case of the 
cone tips rather than the hemispherical ones. Since the nails use are in 
have conical ends, this result is quite consistent. 
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Figure 7. Hilti needle data from Bracher. The continuous line corresponds to Eq. (8), while 
the discontinuous line is an inverse second power fit. 
 
 
4.4 Vicat needle 
The Vicat needle may be thought of in a similar way as the Hilti needle. 
However, in this case, the energy available is a potential energy due to 
gravity. The dissipated energy is thus proportional to the depth to which the 
sample penetrates. Alternatively, we can consider that at stoppage, the 
needle load is carried by the surface of the plastic-elastic interface and use 
a similar analogous surface expression to Eq. (1) or Eq. (2), but in which 
the first term is neglected. In both cases we then get: 

HH nn HR
mg

−≈ 20τ  Eq. (11)

We find that a value of 1.2 for nH allows a good superposition of the data, 
but more extensive tests would be needed to check this result.  
 
4.5 Hydration kinetics 
The above results point to the fact that penetration techniques scale with 
the shear yield stress of the material. Thus, with a continuously measuring 
instrument as a penetrometer, the force measured should be directly 
proportional to the yield stress or elastic modulus. We saw that such data 
appears well represented by two stages that can be fit by power laws. 
 
Here we take this analysis a step further. We average the normalised 
penetrometer results and examine the type of functions that describe their 
evolution best.  



   

   

A condition which is found to fit such data well is to assume that in a first 
stage there is a stiffening of the matrix which follows a hyperbole function. 
In this way the matrix properties are constant at long times and increase 
linearly at short ones. This process may be though more of as a 
flocculation stage. We then assume that the more massive precipitation of 
hydrates in the acceleration period increases the volume of solid inclusions 
in that matrix. In this way a material property as shear modulus is the 
product between the value of that property for the matrix and a function of 
volume fraction of inclusions. If the increase in volume fraction of 
inclusions follows a power law of time we then describe the features 
observed on our data (until the slowing down stage). 

( )n

floc

floc t
tG

tG
G β

α
+

+
= 1

/max

max

 Eq. (12)

where max
flocG  is the shear modulus of the flocculated network at infinite time, 

α is the slope describing modulus increase at short time, β is the prefactor 
of the power law describing the acceleration period behaviour and n is the 
exponent of the power law (5.4 for these samples), 
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Figure 8. Ultrasound shear modulus and average of normalised penetrometer forces 
measured with hemispherical tips. The continuous lines show the proposed fitting curves 
in Eq. (4). The ultrasound data has been reduced for the purpose of illustration. 

 
A possible interpretation of the exponent value is as follows. For gels, it is 
established the Young’s modulus is a power law of density with an 
exponent of about between 2.6 and 3.7 regardless of the microstructural 
and chemical differences [8]. In the zone we are considering the Poisson 
ratio is constant and the evolution of the shear and Young modulus are 
parallel. It should be noted that the range of exponents reported by Ma [9], 



   

   

is similar to what has been reported for the yield stress of suspension [10]. 
In that case, for low values of the percolation threshold, the dependence of 
yield stress on volume fraction φ is expressed as φ3/(φ*-φ), where φ* is the 
geometrical maximum packing. The exponent of the numerator is obtained 
by considering the number of contacts and the fact that the stress is 
transmitted through the solid network. In the case we consider, stress may 
also be transmitted through the matrix, so that an exponent of 2 rather than 
3 would be more appropriate. If furthermore the volume fraction is not too 
close to the maximum packing, then we expect a scaling of yield stress 
with the second power of modulus. A similar reasoning for the gels would 
lead to assuming that the scaling factors reported by Ma for the elastic 
modulus of gels would lie rather between 1.6 and 2.7 if the stress can also 
be transmitted through the matrix. 
 
Furthermore, among the various expressions used to quantify the kinetics 
of the acceleration period, some authors report a power law evolution with 
an exponent of about 2.5 [11] (A similar value is obtained (3) when the 
Avrami equation is used with an exponent of 3, as reporeted by Grartner et 
al [12]). Combining both results would suggest a power law increase of 
modulus with time with an exponent between 4 and 6.75, which is in the 
range observed with our high tech penetrometers. Further investigations 
are however necessary to determine the extent to which these simple 
considerations really capture key processes in cement hydration. 
 
Apart from this, it is worth noting that a simpler expression than Eq. (12) 
may be used. It has the advantage of reducing the number of fitting 
parameters from 4 to three per curve. Indeed, the asymptote not being 
reached for the first stage phenomena, we can approximate the function 
by: 

( )**max* 1 n
floc ttGG βα +=  Eq. (13)

where α*, β* and  n* have similar meaning to α, β and n* previously. 

It should be noted the ultrasound and normalised penetrometer data share 
the values of β* and n*. Taking into account the normalisation factor this 
means that 5 parameters are needed to fit both data series. The resulting 
fit is pretty good as indicated in Figure 8. 
 
 

5 Conclusions 
Systematic variations in the tip geometries of a penetrometer needle have 
made it possible to confirm experimentally that such measurements are 
linked to the shear properties (modulus and yield stress) of cementitious 
materials. 
 
In the case of a hemispherical tip, the forces scale with the tip radius. The 



   

   

situation is however more complex with different geometries and additional 
work would be needed to confirm the proposed scaling relations. 
 
When used correctly, a penetration technique provides a measurement 
that is proportional to a real material property and is therefore not as 
empirical as generally assumed. 
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