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Abstract 
Since the beginning of his work on cement paste, T.C. Powers used iso-
thermal water sorption experiments as a basis for all his reflections. The 
main outcome of such a reasoning is of course his hydration model. Start-
ing from cement chemistry and water/cement ratio, one can evaluate the 
different volumic fractions (gel, capillary pores, ...) of the cement paste as 
a function of the hydration rate. 
Nowadays, the mechanics of porous media allow a new interpretation of 
these curves. As far as you are convinced that capillarity is the main 
driven force of the cement paste hydraulic behaviour, a key characteristic 
for structural applications such as shrinkage can be deduced from it. Be-
ing able to build it from simple parameters could be really interesting. 
We illustrate in this paper how to combine Powers' work with the modified 
BET theory to achieve this goal. Then we will use this building process to 
compute both autogenous and drying shrinkage in a unified way, that even 
allows us to study a possible coupling between the two. 
 
1. Introduction 
We often find two distinct approaches when dealing with cementitious ma-
terials shrinkage in the literature. One aiming at modeling the so-called 
autogeneous shrinkage. And the other dealing with the drying shrinkage. 
Cement mineralogy and w/c ratio will be the major parameters for the for-
mer, w/c ratio the major parameter for the latter. Equations and coeffi-
cients will then be determined based on experimental data, but will of 
course roughly depend on it: are we working on cement paste, concrete, 
mortar, etc. Shortly said, we have equations that work well on the data 
used for fitting their parameters. 
The amazing thing with that distinction is that the mechanisms of these 2 
shrinkages are nearly the same: a gaz phase appears in the previously 
saturated porous medium. This porous medium then shrinks but in a 
granular skeleton, the whole process driving the hydric behavior of con-
crete. 
This paper explains how we managed to describe both autogeneous and 
drying shrinkage using a common theoretical approach, i.e. a combination 
of porous mechanics and micromechanics. This allowed us to derive a 
general model that evaluates the impact of the concrete mix-design on its 
shrinkage. 
 



2. Modeling concrete shrinkage 
2.1. The paste content 

As water leaves the material, capillary tensions are generated. The resul-
tant is a deformation of the material: shrinkage. One speaks about drying 
shrinkage when the water departure is done towards the environment and 
of autogenous shrinkage when the water departure is caused by hydra-
tion. However in a concrete (i.e. a mix of aggregates and paste), only the 
paste is subjected to this water departure. 
This simple observation brings out a first assumption that allows to evalu-
ate the drying shrinkage of our materials: 

pastepasteconcrete fε=ε ⋅   (Eq. 1) 

Written in this form, equation 1 is in fact only the rewriting of the Reuss 
hypothesis, the aggregates shrinkage being neglected. Many authors pub-
lished around a more complex relation [1,2,5,6,8,9,10] resulting from cal-
culations of homogenization [11,12]. 
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pastepasteconcrete fε=ε ⋅   (Eq. 2) 
 

 
(a) From Pickett [13] (b) From Mears & Hobbs [10] 

Fig. 1 Relation between drying shrinkage and paste content 
 
Nevertheless, Hansen [7] showed that it could, in practice, be brought 
back to equation 1, exponent α being justified only for very high paste con-
tents. Thus, considering Pickett’s data [13], for a paste volume ranging be-
tween 30% and 80%, the granular skeleton and the composition of the 
paste remaining identical, the drying shrinkage of the mortar or concrete is 
actually proportional to the paste volume (cf. Fig. 1(a)). Mears and Hobbs 
[10] took again the same type of tests but wanted to maintain a constant 
workability whatever the proportioning in paste. They were thus brought, 
while preserving a constant Dmax, to adjust the grading curve. According to 
Figure 1(b), this small modification already degrades the results quality: on 
the basis of Pickett’s data, the correlation coefficient is almost 1, whereas 
with those of Mears and Hobbs, it is only 0.9. 
 



Earlier, Carlson [4] had emphasized the limits of this approach: in the par-
ticular case of a mortar formulated with a restricted granular grading (4.75-
9.5mm), the ratio between the paste shrinkage and that of the mortar are 
two times higher than the ratio of the paste volumes (cf. Table 1). 
 
Aggregates volumic 
fraction 

Shrinkage measured at 
2 years (µm/m) 

Shrinkage calculated 
using Eq. 1 (µm/m) 

0 3500  
56 % 725 1540 

Table 1 – Shrinkage of mortars using single sized aggregates (w/c = 0.4) 
 
At this point, an immediate conclusion can be drawn: the granular phase 
plays a considerable role in the expression of shrinkage. A simple volume 
ratio does not translate this role. It is therefore essential to better describe 
what a granular skeleton is. 
 

2.2. The granular skeleton 
The first value which characterizes the aggregates is of course their size 
and in particular the maximum size Dmax. Carlson [4] produced on this sub-
ject an interesting work. In order to focus on the effect of the aggregates 
size, he tested mortars using tightened granulometries that follow the pro-
gression of the ASTM sieves. Such mixtures thus approach the ideal 
monogranular case (cf. Fig. 2). 

 
Fig. 2 - Influence of the aggregates size on the drying shrinkage (measurement at 1 year, 
W/C=0.4) 
 
These measurements lead to two major remarks. Firstly, once again, the 
shrinkage does not evolve proportionally to the paste volume fraction: if 
such were the case, the measured value on mortar should be close to 
1600µm/m, which is 30% higher than those obtained in the experiments. 
Secondly, the aggregate size does not seem to influence the free drying 
shrinkage of the material. 
 



To better understand what occurs, we start again from a simple remark: a 
mixture of sand and gravel constitute a porous "solid". One can then 
speak about porosity of the granular skeleton (and its complement, com-
pacity), concept which becomes essential when this solid is mixed with 
paste. Indeed, if the paste volume introduced is lower than the porosity of 
the granular skeleton, the grains will remain in contact with one another 
(cf. Fig. 3). 

Aggregates are too rigid for the paste to
induce a large shrinkage of the

composite

Filling pasteAggregates

 
Fig. 3 – Compact granular skeleton 

Since their rigidity is four times higher than that of the paste, one can eas-
ily understand that such an arrangement will exhibit a quasi negligible 
shrinkage. A limiting volume below which the paste does not affect the 
composite behavior then exists. 
 
Now, if the paste volume introduced is higher than the porosity of the 
skeleton, the surplus of paste will loosen the grains, giving them a degree 
of freedom between each other (cf. Fig. 4). 

Paste shrinkage induce
a large composite

shrinkage

Aggregates Filling paste Loosening paste

 
Fig. 4 – Loosen granular skeleton 

As a result, the composite shrinkage will rapidly increase with the loosen-
ing paste volume (the surplus of paste compared to the porosity of the 
granular skeleton). However this porosity depends on Dmax, but also on 
dmin, i.e. actually on the granular distribution of the sand/gravel mixture. For 

Initial state Final state 

Initial state Final state 



an optimal mixture, we can, using the Caquot’s equation [3], calculate this 
porosity according to the dmin and the Dmax: 

 
max

min.47 0
D
d=p ×  with 

90%passingmax

passing 10%min

D=D

d=d
 (Eq. 3) 

R. Leroy first described this distinction in volume [15]. He took into ac-
count the granular skeleton and its grading by using a 3 phases microme-
chanical model. He obtained better agreement between calculated and 
measured properties than with the Reuss hypothesis. Besides, he could 
then account for aggregates variations, what was impossible without dis-
tinguishing the 2 paste volumes. 
 
We thus choose to use a similar morphological description. The microme-
chanical model is the generalized n-layer phase model from Hervé and 
Zaoui [14]. Its outputs are the elastic modulus of the homogenized me-
dium, and its deformation due to cement paste shrinkages. We made the 
assumption that aggregates are surrounded by a constant thickness of 
paste. 

Fig. 5 – The n-layered spherical inclusion embedded in an infinite matrix 
Going back to experimental results, we tried to use this micromechanical 
model to derive concrete drying shrinkage from its equivalent mortar dry-
ing shrinkage (same w/c ratio, cured for 7 days at 20°C/100% RH). Fig. 6 
confirms that Eq. 1 is not adapted when the particule size distribution of 
aggregates changes.  

 
Fig. 6 - Going from mortar to concrete using Eq. 1 
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But using our 3 phases model gives a perfect agreement between meas-
ured and calculated values (cf. Fig. 7). The only input are the gradings of 
the different aggregates. 
 

 
Fig. 7 - Going from mortar to concrete using our 3 phases model 

At this point, we have a valid concrete shrinkage model, but you still have 
to measure cement paste shrinkage for using it. If this can be considered 
as feasible for the drying shrinkage, dealing with autogeneous shrinkage 
would be far more complicated: the restraint of aggregates is influence by 
the cement paste elastic properties. We thus need more than an autoge-
neous shrinkage curve. 
 
3. Modeling paste shrinkage 
We first have to better describe what we call “paste”. First we have an 
heterogeneous medium made of anhydrous cement, hydrates, water, etc. 
If we consider a well matured paste, we will have to quantify the different 
volumic fractions. But if we want to include autogeneous shrinkage in our 
modeling process, we will also have to quantify both the volumic fractions 
of the different phases and their evolution due to chemical reactions. 
Shortly said, we need an hydration model. Then we have to consider that 
cement paste is a porous medium. To evaluate its deformation behavior, 
we need a stress-strain relation for that medium. 
 
What first comes to mind to address the second point is the Laplace-
Kelvin equation. 
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 with r: pore radius, ρsl: water specific mass  (Eq. 4) 

The main drawback of this relation is that we model the pore scale. Gen-
eralizing Eq. 4 at the paste scale implies that we are able to measure pre-
cisely the pore size distribution of the cement paste. Given that this point 
is still subject to strong debates in the literature, we chose to use exactly 



the opposite way [21]. Why not describing the phenomenas using macro-
scopic tools? 
 
[16,17] first illustrated how to bypass this difficulty using porous mechanics 
and isothermal sorption/desorption curves. The isothermal sorp-
tion/desorption curve is a direct macroscopic translation of the microscopic 
behavior. It gives you the relation between saturation degree and the rela-
tive humidity. Once you have it, the porous mechanics allow you to estab-
lish a stress-strain relation: 
 gcl dpdpS+dεK=dσ −.0  (Eq. 5) 

with  pc: capillary pressure, 
 Sl: saturation degree, 
 pg: gaz pressure, 
 K0 : compressibility modulus of the solid 
 
In our particular case, we can assume that: 
 pg=patm, 
 dσ=0 (no external stress applied), 
 cement paste is an isotropic material. 
 
This leads to a relation between free deformation, i.e. shrinkage, and satu-
ration degree / relative humidity which can be integrated using the sorp-
tion/desorption curve: 
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 (Eq. 6) 

So all we have to know are the sorption/desorption curve and the elastic 
properties of the cement paste (K0 in Eq. 6). For drying shrinkage, there is 
no particular issue (apart from the time needed to generate these data). 
But for the autogeneous shrinkage, a massive quantity of data is required 
to capture the impact of chemical reactions. 
 
We decided to bypass this problem by modeling these characteristics. 
First, the sorption curve can be described using a BET equation [18]: 
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 (Eq. 7) 
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 h: relative humidity. 
 
We have 2 constants to determine in Eq. 7: Vm and k. We thus need to 
identify 2 specific points on the sorption curve to solve the underlying 
equations. The use is to distinguish 2 domains in these curves. The low 
relative humidity domain, typically less than 30-40%, where water is only 
adsorbed on hydrates surface, and the high relative humidity domain 



where condensed capillary water is added to the previous one [20]. We 
then decide to identify 3 specific points on the sorption/desorption curve 
(cf. Fig. 8): 
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Fig. 8 - Schematic description of a sorption/desorption curve 

• Fully saturated point (RH=1): this characterize the total porosity, 
• Gel point (RH=30%): characterize the low relative humidity domain 

and is directly related to the surface area developed by hydrates. 
• Autogeneous point: Hydrates occupy less space than the initial 

products (Le Chatelier contraction). As the cement paste hydrates, 
a new pore space is created, in which water will be adsorbed. This 
will cause a “chemical” desaturation. 

 
Powers built a complete hydration model using this type of curves. It gives 
simple relations between hydration and volumic fractions of the different 
phases [19]. The following equations are the commonly used ones. But 
one can find more specific relations in Powers work, especially coefficients 
taking cement mineralogy into account [19]. 

• Hydrates gel: 
.32 0/

.68 0
+c)(w
m

 (Eq. 8) 

• Anhydrous cement: 
.32 0/
.32 0 1

+c)(w
m)( −

 (Eq. 9) 

• Gel pores:  
.32 0/

.19 0
+c)(w
m

 (Eq. 10) 

• Capillary pores:  
.32 0/

.36 0/
+c)(w

mc)(w −
 (Eq. 11) 

• Empty capillary pores: 
.32 0/

.0575 0
+c)(w
m

 (Eq. 12) 

Summing equations 10 and 11 gives us the fully saturated point. 



 .11.10 Eq+Eq=wsat  (Eq. 13) 

Now we have to convert Eq. 8 which gives the gel volumic fraction in a 
quantity of water adsorbed on the gel to get the gel point. We thus need 
two more characteristics: the surface area developed by the hydrates, and 
the thickness of the water film adsorbed on it, i.e. a t-plot curve. Eq. 14 is 
the generally accepted relation giving access to this thickness: 

 (RH))(=t(RH) ln.89ln 1.95 3 −−  with RH in % and t(RH) in Å (Eq. 14) 

V. Baroghel-Bouny [18] and H. Jennings [22] made several estimations of 
the gel surface area using different techniques. What comes out of their 
results is that we have to distinguish 2 kinds of hydrates (inner/outer CSH, 
or high density/low density CSH). They differ both in density and specific 
surface area. As a first approach we used Jennings’ relation to evaluate 
the proportion of each kind of hydrates (Eq. 15) [22]. 

 .131 0.706 0 +
c
w=fouter  ; outerinner ff −= 1  (Eq. 15) 

with the following physical properties: 
• outer C-S-H :  SSouter = 250 m2/g ρouter = 2.1 g/cm3 

• inner C-S-H :  SSinner = 450 m2/g ρinner = 2.5 g/cm3 

Finally, the gel point can be defined as: 

 )+(f)(=w innerinnerouteroutergelgel .SSf .SSf ..HR t  (Eq. 16) 

and the autogeneous point as: 

 .12Eqw=w satendo −  (Eq. 17) 

At this point we can use Eq. 13 and Eq. 16 to determine Vm and k, and 
consequently the sorption curve as a function of the cement paste compo-
sition and its maturity. The autogeneous shrinkage can then be calculated 
using Eq. 18. 

 )α(tdh
)HR(t

) h
wK=)dεε( j

j

jHR(t

j for    
1

∫
−

×  (Eq. 18) 

with tj:time, 
 α: maturity. 
 
Unfortunately, we could not find a lot of information in the literature con-
cerning desorption, which is interesting for modeling drying shrinkage [19]. 
We thus chose to use a very rough estimation of this curve using a poly-
nomial interpolation based on the previously defined points. Shortly said, 
we managed to get a correct shape out of an interpolation. Desorption is 
then a function of the paste mix-design and hydration state, even if its 
modeling is not perfect. 
 



4. The complete model 
Being confident in our composite model, we can combine it with the mod-
eling of the paste shrinkage described in previous section. This combina-
tion gives us a concrete shrinkage model that only needs the initial com-
position as input parameter. We compared the E-modulus as well as the 
autogeneous shrinkage of 5 concrete mixes: 
 

• C40 : 400 kg cement, 215 l water 
• C60 : 400 kg cement, 50 kg filler, 176 l water 
• C80 : 450 kg cement, 50 kg filler, 158 l water 

 
The results are shown in tables 2 & 3. 
 
Concrete E-modulus exp. (MPa) E-modulus calc. (MPa) Error (%)
C40 32 33 5.6 
C60 41 40 -2.4 
C80 44 43 -2.3 

Table 2- Modeling the concrete E-modulus 

Concrete Exp. autogeneous 
shrinkage (µm/m)

Calc. autogeneous 
shrinkage (µm/m) 

Error 
(%) 

Exp. Error 
(%) 

C40 83 67 -19 ± 18 
C60 110 95 -13 ± 13 
C80 142 144 1.4 ± 10 

Table 3 - Modeling the autogeneous shrinkage at 28 days 

We also ran some drying shrinkage tests on mortars containing different 
paste volumes, and with a varying w/b ratio. These tests were performed 
at 20°C/50% RH. The only input was the mix-design of the different mor-
tars. Table 4 shows the comparison between measured values and calcu-
lated ones. 
 

W/B Paste 
volume (l) 

Exp. Drying 
shrinkage 

(µm/m) 

Calc. Drying 
shrinkage 

(µm/m) 

Error 
(%) 

Exp. Error 
(%) 

0.46 475 749 723 +3.5 ± 5.5 
0.375 475 601 698 +16 ± 10 
0.55 475 862 908 -5 ± 5 

0.419 445 633 583 +8 ± 4.5 
0.506 445 763 723 +5 ± 5 
0.419 505 727 854 -17 ± 7 
0.55 505 850 950 -12 ± 15 
Table 4 - Drying shrinkage tests on various mortars. Comparison with our modeling 

In all these examples, the agreement between calculated values and 
measured ones is good, and pretty close to experimental precision (some-
times better). 
 



5. Conclusion 
We derived a generic model to simulate the impact of the mix-design on 
both autogeneous and drying shrinkage of concrete. These 2 shrinkages 
are modeled using a unique theoretical approach that is a composite 
model and porous mechanics. The only input parameters are those re-
lated to the mix-design: cement, water and aggregates content, aggre-
gates particules size distribution, cement mineralogy. This leads to a very 
powerfull tool applicable to all kind of mix without fitting parameters. Simu-
lating coupling between hydration processes and drying becomes straight-
forward. 
 
Of course, there is still some work left. What is presented here is based on 
linear poro-elasticity. We know that creep is important especially at early 
ages if we want to derive stresses. Aggregates are modeled as spheres. 
Maybe a more generic shape such as ellipsoids could be added. 
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