Phase Compatibility of α -C₂S-C₄A₃ \overline{S} Clinker on the System CaO-SiO₂-Al₂O₃-SO₃

<u>T.H. Ahn</u> University of Tokyo, Tokyo, Japan

Many researchers have studied the fabrication of $C_4A_3\overline{S}$ and pure C_2S in order to increase hydration reactivity of C₂S in early stage. However, although it is generally acknowledged that various phase diagrams coexist on the system CaO-SiO₂-Al₂O₃-Fe₂O₃-SO₃, no detailed examinations have been reported on the phase compatibility of α -C₂S- $C_4A_3\overline{S}$ clinkers on the system CaO-SiO₂-Al₂O₃-SO₃ (C-S-A- \overline{S}). In this study, α -C₂S-C₄A₃ \overline{S} clinkers were synthesized at various temperatures from a mixture of raw materials. The α -C₂S was stabilized at room temperature by adding borax. Phase equilibria of these clinkers in C-S-A- \overline{S} system were also investigated by XRD, FT-IR and TEM. The results show that coexisted phases changed from $C_{12}A_7+C_4A_3$ \overline{S} +CA to $C+C_3A+C_4A_3 \overline{S}$ according to the temperature on the CaO-Al₂O₃-SO₃ system, and Ca₁₁(SiO₄)₄O₂S phases occurred at 1300°C on the CaO-SiO₂-CaSO₄ system. Moreover, modified belite clinkers containing the stabilizer were synthesized at 1300°C by the addition of the stabilizer and their major phase was α -C₂S-C₄A₃ \overline{S} .